Copula based prediction models: an application to an aortic regurgitation study

نویسندگان

  • Pranesh Kumar
  • Mohamed M Shoukri
چکیده

BACKGROUND An important issue in prediction modeling of multivariate data is the measure of dependence structure. The use of Pearson's correlation as a dependence measure has several pitfalls and hence application of regression prediction models based on this correlation may not be an appropriate methodology. As an alternative, a copula based methodology for prediction modeling and an algorithm to simulate data are proposed. METHODS The method consists of introducing copulas as an alternative to the correlation coefficient commonly used as a measure of dependence. An algorithm based on the marginal distributions of random variables is applied to construct the Archimedean copulas. Monte Carlo simulations are carried out to replicate datasets, estimate prediction model parameters and validate them using Lin's concordance measure. RESULTS We have carried out a correlation-based regression analysis on data from 20 patients aged 17-82 years on pre-operative and post-operative ejection fractions after surgery and estimated the prediction model: Post-operative ejection fraction = - 0.0658 + 0.8403 (Pre-operative ejection fraction); p = 0.0008; 95% confidence interval of the slope coefficient (0.3998, 1.2808). From the exploratory data analysis, it is noted that both the pre-operative and post-operative ejection fractions measurements have slight departures from symmetry and are skewed to the left. It is also noted that the measurements tend to be widely spread and have shorter tails compared to normal distribution. Therefore predictions made from the correlation-based model corresponding to the pre-operative ejection fraction measurements in the lower range may not be accurate. Further it is found that the best approximated marginal distributions of pre-operative and post-operative ejection fractions (using q-q plots) are gamma distributions. The copula based prediction model is estimated as: Post -operative ejection fraction = - 0.0933 + 0.8907 x (Pre-operative ejection fraction); p = 0.00008 ; 95% confidence interval for slope coefficient (0.4810, 1.3003). For both models differences in the predicted post-operative ejection fractions in the lower range of pre-operative ejection measurements are considerably different and prediction errors due to copula model are smaller. To validate the copula methodology we have re-sampled with replacement fifty independent bootstrap samples and have estimated concordance statistics 0.7722 (p = 0.0224) for the copula model and 0.7237 (p = 0.0604) for the correlation model. The predicted and observed measurements are concordant for both models. The estimates of accuracy components are 0.9233 and 0.8654 for copula and correlation models respectively. CONCLUSION Copula-based prediction modeling is demonstrated to be an appropriate alternative to the conventional correlation-based prediction modeling since the correlation-based prediction models are not appropriate to model the dependence in populations with asymmetrical tails. Proposed copula-based prediction model has been validated using the independent bootstrap samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling the Dependency Structure between Stocks of Chemical Products Return, Oil Price and Exchange Rate Growth in Iran; an Application of Vine Copula

The main objective of this study is modeling the dependency structure between the returns of oil markets, exchange rate and stocks of chemical products in Iran. For this purpose, the theory of Vine Copula functions is used to investigate the dependency structure. In addition to consider a linear relationship between financial markets in Iran, the nonlinear dependency structure of these markets ...

متن کامل

Risk Management in Oil Market: A Comparison between Multivariate GARCH Models and Copula-based Models

H igh price volatility and the risk are the main features of commodity markets. One way to reduce this risk is to apply the hedging policy by future contracts. In this regard, in this paper, we will calculate the optimal hedging ratios for OPEC oil. In this study, besides the multivariate GARCH models, for the first time we use conditional copula models for modelling dependence struc...

متن کامل

A GLM-Based Method to Estimate a Copula\'s Parameter(s)

Abstract. This study introduces a new approach to problem of estimating parameter(s) of a given copula. More precisely, using the concept of the generalized linear models (GLM) accompanied with least square method, we introduce an estimation method, say GLM-method. A simulation study has been conducted to provide a omparison among the inversion of Kendal’s tau, the inversion of Spearman’s rho,...

متن کامل

Analysis of Dependency Structure of Default Processes Based on Bayesian Copula

One of the main problems in credit risk management is the correlated default. In large portfolios, computing the default dependencies among issuers is an essential part in quantifying the portfolio's credit. The most important problems related to credit risk management are understanding the complex dependence structure of the associated variables and lacking the data. This paper aims at introdu...

متن کامل

Application of Clayton Copula in Portfolio Optimization and its Comparison with Markowitz Mean-Variance Analysis

With the aim of portfolio optimization and management, this article utilizes the Clayton-copula along with copula theory measures. Portfolio-Optimization is one of the activities in investment funds. Thus, it is essential to select an appropriate optimization method. In modern financial analyses, there is growing evidence indicating the distribution of proceeds of financial properties is not cu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BMC Medical Research Methodology

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2007